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Close to the melting point the thermal conductivity and the electrical resistivity of sodium
(99.99 at.% with 100 and 200 ppm potassium) were measured simultaneously in the same
sample. A steep rise was found in the thermal conductivity whereas the electrical resistivity

showed no departure from the expected behavior.

Also no difference could be detected between

the polycrystalline and single-crystalline samples. The results are discussed in terms of the
impurity content, of a pure-first-order transition, and of an instability point of the solid state.
Some arguments are given to support the instability hypotheses.

I. INTRODUCTION

The nature of first-order thermodynamic phase
transitions has recently attracted much interest.
Among the properties which have been measured
are the specific heats of the alkali metals sodium, *
rubidium, and cesium, %of body-centered-cubic (bcc)
helium, ®and of high-purity gallium,* the diffusion co-
efficients of indium, ° tin, ® and sodium, ” ultrasonic
attenuation in tin, ® and the specific volume of so-
dium.® The conclusion may be drawn from all
those data that there is some intrinsic or impurity-
dependent effect close to the melting transition.

To examine this point further it was decided to
measure the transport properties very close to the
melting point. High-purity sodium (99. 99 at. %)
was chosen as a test substance, because the crystal
structure is bce and therefore easy to handle theo-
retically. The electronic structure is also well
known. ! Thus studies of a pure lattice transition
seem to be possible, the Fermi surface being a
sphere in both the solid and liquid states. Elec-
trical and thermal conductivities are reported in
this paper. The measurements were done using
single- and polycrystalline-sodium samples with
different impurity contents. Three samples were
doped with 100 ppm (mole) potassium and one 200
ppm. The other impurities detected were Mg < 20
ppm, Fe<5 ppm, and Ca<5 ppm, as stated by the
supplier.!! The oxygen content should be smaller
than 5 ppm. 2

The present paper is organized as follows. Sec-
tion II contains abrief survey of the main approaches
to a theory of melting. Effects due to impurities
are considered in Sec. III. The apparatus and
method of measurement are explained shortly in
Sec. IV, whereas Sec. V presents the main results
of this paper. In Sec. VI, several possible mech-
anisms for the anomalous thermal conductivity are
suggested including some arguments which support
an instability-point hypothesis.

Il. SURVEY OF APPROACHES TO MELTING THEORY

It has been proven by Lee and Yang'? that statis-
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tical mechanics is capable of dealing with the problem
of different phases in a many-particle system.
These authors were able to show that in the thermo-
dynamic limit of an infinite system the Gibbs free
energy is a continuous function of pressure and
temperature and that a first-order phase transition
is determined by discontinuities in the first partial
derivatives with respect to the stated variables.
However for a real interacting system it is almost
impossible to calculate the exact Gibbs free energy
for the whole range of the variables from first prin-
ciples. Thus this function is evaluated separately
for the different phases by introducing suitable ap-
proximations. The two-phase equilibrium curve
p=p(T) can be derived in this case by equating two
of these Gibbs free energies. In finite systems,

the metastable states of superheating and supercooling
are allowed. To what extent these states can be
reached is governed by rate theories of seed grow-
ing.* Pre- and after-melting phenomena are also
possible, according to the Frenkel-Bartenev!®
theory. These authors introduced the argument
into the theory that a certain amount of the meta-
stable phase, specified by a parameter u, is already
present in the stable region (heterophase fluctua-
tions).

In the Lee and Yang theory, the magnitudes of the
second partial derivatives of the Gibbs free energy
G at a point, where a first-order transition occurs,
remain undetermined. It is normally accepted
that these derivatives are finite and do not show
any extraordinary behavior. However one can not
exclude the possibility that for the compressibility
Kp:

9,/

and/or for the specific heat at constant pressure
Cyt

Cp= T(%%)P (2)

or, generally speaking, that any one of the partial
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4 TRANSPORT PROPERTIES OF SODIUM CLOSE

second derivatives of the thermodynamic poten-
tials, 1® G being a special case of these potentials,
are diverging if the transition point is approached
from below, i.e., from the solid side of the melt-
ing transition. This special assumption is called
the instability hypothesis of the solid phase. It is
based on the physical argument that the melting
transition is primarily caused by an instability of
the solid phase. Possible mechanisms for such an
instability are discussed later on in Sec. VI.

To the authors knowledge, no theories for the

solid-liquid transition do exist, relating the relative

position of the instability limit of a phase—deter-
mined by divergences of the second partial deriva-
tives of the general thermodynamic potentials—to
that of the metastability limit, fixed by the discon-
tinuity of the first partial derivatives of the Gibbs
free energy. At the present stage of the theory, a
possible coincidence or a closeness of both
limits, a necessary condition for the instability
hypothesis (see Fig. 1), can only be deduced from
experimental results. Some of these, concerning
the alkaline metals, are collected in Table I. It
may be stated that other bcc metals than the alka-
line ones also fit closely into the same pattern. !’
Typical solid-state parameters, such as the activa-
tion energy for diffusion ,, the expansion coeffi-
cient @, and the formation enthalpy of vacancies
H;, are directly related to the melting temperature.
But the most striking evidence in this context is the
Lindemann!” melting rule, which holds for the five
alkali metals as well as for a lot of other metals.

Table I gives the Lindemann constant ¢ which should

be the same for all substances with the same lattice
structure. !®

According to the stated instability hypothesis,
one can propose the following picture of the melting
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FIG. 1. The T-V diagram proposed for the melting
transition. Heavy lines indicate the metastability limits,
whereas the dashed-dotted lines give the stability limits
of the solid and liquid phases, respectively. Thin lines
correspond to the equilibrium isobar. For further com-
ments see text.

transition. The instability limit of the solid phase
in the temperature-volume diagram of Fig. 1 lies
very close to (or coincides in the most extreme
case with) the metastability limit, whereas the in-
stability limit of the liquid phase is separated dis-
tinctly from the corresponding metastability limit
(see also note added in proof). Thus it is evident
that this transition looks like a higher-order one
from the solid side, with no super-heating, while
on the liquid side the normal behavior of a first-
order transition is exhibited. Large supercooling
is therefore possible. The failure of the usual
Maxwell equal-area construction is clearly seen in
this case. But that objection is not serious, as
there is no sound foundation for this procedure.

TABLE I. Correlation between solid-state properties and the melting point of the alkali metals. T,,: melting point;
Qq: activation energy for self-diffusion; a: volume expansion coefficient; Hy: single-vacancy formation energy; and ¢: Linde-

mann constant.

a Qe/ T HY/T,,
T, Q 10 HY 1073 aT, 103

Metal (K)® (ev)®d (K (ev)d o (eV/K) 10-2 (eV/K)

Li 453.7 0.562 1.7¢ 0.40 3.2 1.24 7.7 0.88

Na 371.0 0.450 2. of 0.42 3.8 1.21 8.2 1.13

K 336.4 0.425 2.5¢ 0.39 3.3 1.265 8.4 1.16
Rb 312.6 0.411 2.7t 3.9 1.313 8.4
Cs 302.9 2. 9%f 3.6 8.8

4J. J. Gilvarry, Phys. Rev. 102, 308 (1956).
YHandbook of Chemistry and Physics, 48th ed. (The
Chemical Rubber Co., Cleveland, Ohio, 1967). Absolute

temperature and temperature differences are indicated
by the symbol “K” (Kelvin), where 10-3 K=1 mK. Some-
times temperature is also given in °C.

¢J. N. Mundy (unpublished).

9R. C. Brown, J. Worster, N. H. March, R. C.
Perrin, and R. Bullough, AERE HL Report No. 70/2825
(1970) (unpublished).

°G. Borelius, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic, New York, 1958), Vol. 6.

B. Eckstein, Phys. Status Solidi 20, 83 (1967).
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III. IMPURITIES

In discussing pre-melting phenomena the impurity
question has to be an important one. A lot of the
reported data (see Table I of Ref. 6) are strongly
dependent on the impurity content of the samples.
As far as impurity effects are understood!'? we can
separate the impurities into two groups distinguished
by their relative solubilities in the host metal: (i)
Soluble impurities are responsible for mainly two
effects. Normally the melting point is lowered and
broadened to a melting region, depending on the
distribution factor k.! This factor is defined as the
ratio of the saturation concentration of the impurity
in the solid phase to that in the liquid phase at the
melting temperature. It can be deduced from the
slopes of the solidus and liquidus lines in the two
substances’ phase diagram for small impurity con-
tents.

The following equation can be derived from ther-
modynamic arguments! for small impurity concen-
trations:

Ty =Trp= RT3 x L3t [y + /(L= )T, ®)

where T, is the melting point of the pure substance;
R, the gas constant; L,, the latent heat of melting;
x, the impurity concentration in the solid (mole

per mole); v, the ratio of the molten part of the
sample to the total sample mass; and k, the dis-
tribution factor as defined above. The solidus line
is given by v equal to zero; whereas y equal to

one corresponds to the liquidus line. The width of
the melting region is calculated from Eq. (3) to be

Tml - TmOZRTrznpx(l - k)z/(Lmk) s (4)
and the melting point depression is
Tpp= Tmy=RT%,x(1 = k)/L,, . (5)

Additional effects on the defect properties at high
temperatures are also generated by impurities. °
(ii) Nonsoluble impurities are clustered at inner
(grain boundaries) and outer surfaces of the crystal
but only if there is full equilibrium. Each cluster
is then surrounded by a small layer of liquid, in
which those impurities are dissolved to some ex-
tent. This effect can be deduced from Eqgs. (3) and
(4) by setting % equal to zero. It is seen that at
every temperature below the melting point a certain
part of the sample is molten. The situation is not
altered if there is a homogeneous impurity distri-
bution resulting from a rapidly solidified melt. In
this nonequilibrium case, the melting transition
is also smeared out. After a short time the solid
contains pockets of the liquid phase at regions where
the impurities had assembled by diffusion. Thus
large premelting effects are easy to detect if non-
soluble impurities are present.
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IV. APPARATUS AND METHOD OF MEASUREMENT

The measurements were made in a thermostat,
described elsewhere.!® The sodium sample was
contained in a stainless-steel tube with the following
dimensions: length 120 mm, wall thickness 0.1
mm, and diameter 6 mm. Thermal conductivities
were measured by a quasistatic method with very
small temperature gradients (< 30mK). Variations
in the heat capacity of the sample are included in
the data-analysis procedure. Corrections were
also made for parallel heat conduction and for ra-
diation. Very low heating rates (less than 50 mK
per 24 h) were used for changing the absolute tem-
perature. A measurement at a given temperature
was checked with additional runs at the same tem-
perature, allowing for various cooling times (6—24
h) between two runs. In the limits of the stated
errors no systematic variations of the results could
be detected. Further experimental details may be
found in a previous paper.2® The electrical conduc-
tivity was measured simultaneously in the same
sample using a Kelvin-bridge arrangement inte-
grated into the thermostat to minimize thermopower
distortion.

Statistical errors are estimated to be 3% for the
electrical conductivity and about 6% for the thermal
conductivity measurements in the “normal” region,
outside the steep rise. Depending on the smallness
of the temperature gradient in the “fast rise” re-
gion, the errors there grow up to about 20% (see
Fig. 6).

V. RESULTS

Results for the thermal and electrical conduc-
tivities are plotted in Figs. 2-5. The temperature
region covered extends from 0. 5 K below, up to
0.15 K above the starting point of melting (T,,).
These data points are corrected for averaging due
to the temperature predifference 67, and due to
the measurement interval. The predifference 67,
is defined to be the temperature difference across
the sample, before the heat flux for the measure-
ment g, was switched on. This difference was ad-
justed in such a manner that it equals about half
the temperature rise due to the heat flux ¢,. That
procedure gives optimal conditions for the data re-
duction. The numbers for the predifferences are
also listed in the figures. They indicate that no
changes occur when these values are altered. Data
points shown are derived from two single crystals
(samples 2 and 3) and from polycrystals (samples
1 and 4). Orientations and impurity contents are
also stated in the figures. A glance at the electrical
resistivity reveals that the impurity effect of melt-
ing-zone broadening is clearly visible. Identifying
the first kink in these curves with the starting
point of melting T,, and the second one with the
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FIG. 2. Thermal conductivity of the polycrystalline sample 1 with an impurity content of 100 ppm (mole) potassium.
Temperature scale from directquartz thermometer readings, not corrected.

end point T, one can calculate the impurity content
and the melting-point depression with the aid of

Egs. (4) and (5). The absolute temperatures given
in the Figs. 3-5 are derived from these calculations
and the assumption that the melting point of the

pure substance is 97.830°C.! The resulting tem-
perature scale is in good agreement with the abso-
lute-temperature determination by a high-resolution
quartz thermometer.?' The calculated impurity con-

tents are also within the limit of the stated con-
taminations in the samples 1-3. Sample 4 shows a
scattering of data points in the region where the
steep rise calculated from the known impurity con-
tent should occur. Further comments on the point
are made in Table II and in the discussion.
Supercooling inboth electrical and thermal conduc-
tivities is also shown in these figures. It was pos-
sible to maintain these metastable states as long

g [Q.m] °
A -7 °
g 1.0x10
mK
. -
0.8 +*
________ - — X — — — x— _b__‘___i&___to_i. it -
0.6
Sample 2
Single crysal
C112] direction
4001~ S°deviation from crystalaxis
5Tpre *-8mK .
300+ €=~100ppm .
x,0 : Later measurements, %
same crystal *
2001 °
solid oo
__________ e i o dabe b S liquid
100 . o
Ti Ti
0 1 1 1 1 1 PO W‘ 1
97.300 97400 97.500 97600 97.700 97800 97900
TC°C)

FIG. 3.
rected through the width of the melting region.
purity content 100 ppm (mole).

Thermal conductivity and electrical resistivity of the single crystalline sample 2. Temperature scale cor-
Melting point of pure sodium is accepted to be 97.830°C. Stated im-
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FIG. 4. Thermal conductivity and electrical resistivity of the single crystalline sample 3. For comments see Fig. 3.

as three days. In contrast, superheating was never
seen. The dashed lines shown are extrapolations

The impurity contents calculated from the width
of the melting region are in good agreement with

of fitted straight lines from the measurements from
32°C up to the melting point. ¥

VI. DISCUSSION

First we would like to discuss the steep rise of
the thermal conductivity prior to melting in view
of the impurity content of the samples. Nonsoluble
impurities are not detected and likely not present.
This point of view is supported by two arguments.

the stated impurity contents as are the evaluated
melting point depressions with the temperature
scale. That point was already discussed in Sec. V.
Second, the partial melting of the sample would
have been seen in a rise of the electrical resistivity
which was not observed (except in sample 4, how-
ever; see discussion below).

The major impurity, potassium, is soluble at these
concentrations in the solid and liquid phase. (See

g [Q:m)
A L1oxo7 .
Watt
[Km
_OB . X
L P S, bl .
- 06
Sample 4
Polycrystal
-+
400 6Tpre = -10mK
¢ 1.heating run
o cooling run
300 + 2.heating run *
&=82-330ppm , :"u
200~ solid AT g ?
. 3’”’ o, )
______ P T 0 S SRR SO S . liquid
100+ o e .
Tmo (330 ppm) Tmoisz ppm)
0 1 1 1 —_ 1 1 1
97300 97400 97500 97600 97700 97.800 T°C)

FIG. 5. Thermal conductivity and electrical resistivity of the polycrystalline sample 4. Stated impurity content 200 ppm
(mole) potassium. For further comments see Fig. 3 and text.
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TABLE II. Calculated impurity contents and starting
points of melting, using £ =0.33 (Ref. 22) and T,
=97.830°C [from Egs. (4) and (5)].

Width of the Impurity Starting point
Sample melting region content of melting
No. (mK) [ppm (mole)] (°C)

1 Not measured

2 585 100 97.75
3 EX 130 97.71
4 48+6 60 97.76
4 e 330 97.54

sodium-potassium-phase diagram. ) No contami-
nations were introduced during handling as is shown
by the agreement between the stated and measured
impurity contents (Table II). Spatial inhomogeneous
impurity distributions can cause different starting
points of melting T, in different parts of the sample
This effect can easily arise during solidification
due to zone refinement effects. To avoid such a
distribution one has to wait for equilibrium in the
liquid state, which has a much higher diffusion co-
efficient than the solid. The solidification must
occur with such a crystallization velocity that the
diffusion is now ineffective in establishing equili-
brium during this process. An almost homogeneous
impurity distribution will result. 14

Looking at the present experiments, an inhomo-
geneous distribution can be ruled out by two argu-
ments. First, if there exists a locally lower melt-
ing point, it must be seen in a rise of the electrical
resistivity. The ratio of the resistivities of the
liquid to the solid state is about 1.5. A molten
percentage as low as about 6% can be detected by
this method (see discussion of sample 4). Second,
any small variation of the heat capacity of the sam-
ple will not influence the thermal conductivity mea-
surements, this effect being incorporated in the
data analysis.?® Using the diffusion coefficient” of
solid sodium, one can show that small inhomogene-
ities of some millimeters in magnitude will disap-
pear typically with a time constant of about 10 h.
This time is short compared with the over-all time
of measurement of about three months.

Now let us discuss the anomalous behaviour of
sample 4. Inspection of Fig. 5 shows a time-de-
pendent behavior of the thermal conductivity, which
can be taken as an indication of strong diffusion
effects. The reason for such a behavior is possibly
an inhomogeneous impurity distribution. The elec-
trical resistivity shows also a small rise in this
region. One can explain the experimental results
assuming a higher impurity concentration of about
330 ppm potassium at one end of the sample and a
lower one in the middle and the other end. The
first smaller rise is due to premelting effects in
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the first zone, while the final steep rise belongs
to the lower impurity content. The two starting
points of melting are indicated by arrows in Fig. 5.

At this point in the discussion one should empha-
size that the observed high thermal conductivities
prior to melting could be caused by unknown im-
purity effects or could be explained by an intrinsic
property of the pure material. This point cannot be
clarified however by the present experiments. Ad-
ditional work at purer sodium and especially on
high-purity metals is necessary to get further in-
formation. Other low-melting metals such as in-
dium and gallium are available at high purity but
there are also a lot of additional difficulties con-
nected with the interpretation of the data, because
these metals possess complex lattice structures
and also complex electronic systems. The follow-
ing discussion is therefore based on both possi-
bilities and gives some arguments for the impurity,
as well as for the pure-material hypothesis.

At first one could be tempted to interpret the ex-
perimental results in terms of the Frenkel-Bartenev
theory, mentioned in Sec. II. The mass parameter,
which characterizes the fraction of the metastable
phase inside the stable one, can be determined from
volume expansion measurements.® But this theory
can never account for the rise in the thermal con-
ductivity because the liquid value is smaller by a
factor of about 0. 65 in comparison to the solid one
at 97°C. A second possibility is to think in terms
of a soft-mode behavior, analogous to that which
was proposed by Alder ef al.® to explain their re-
sults on the specific heat of bcc solid helium. De-
spite the fact that helium is an extreme quantum
substance, the mechanisms introduced by these
authors seem also possible for nonquantum mate-
rials. Such a soft mode could either be identified
with a special transverse phonon® at wave vector
4= 0, i.e., a sound wave, or with a longitudinal
or transversal phonon at wave vector { close to a
reciprocal lattice vector, 2 at least in principle.
These latter vibrational modes are termed “um-
klapp” phonons. The list of candidates must be
viewed in the light of the physical background, that
these excitations are absent or are largely modified
in the liquid.?® Possible mechanisms for such a
softening could be the introduction of a large con-
centration of vacancies as well as of an appreciable
amount of impurity atoms into the well-ordered
lattice array. In the present experiments, the con-
centration of vacancies at the mélting point® is about
103, whereas the impurity concentration is about
10, This can be taken as an indication that,
roughly speaking, the impurity effect may be in the
same order of magnitude as the vacancy one. Also
the coupling of the phonons to one another via the
anharmonic interaction could play an important role
in the breakdown of the long-range order.
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At first glance, however, the soft-mode hypoth-
esis seems not to be adequate to explain the anom-
alous behavior of the thermal conductivity, as pho-
nons with small-§ vectors are pure sound waves
which do not contribute very much to the transport
of heat. But this difficulty can be removed by the
following argument: Separation of the thermal con-
ductivity into a lattice part A; and an electronic
part »,, with the aid of the Wiedemann-Franz law,
shows that only the lattice part diverges. 2® Now
the lattice part can be looked upon to be a sum of a
phonon part A, and of a diffusion part ;. Let us
now concentrate on the diffusion part. Nonequilib-
rium thermodynamics provides a link between dif-
fusion and thermal conductivity through the cou-
pling of heat and particle flow, caused by gradients
in the temperature and in the chemical potential,
respectively. To get a feeling for the magnitude
of A, we assume to a first approximation a vacancy-
type diffusion?’

7&4 = —DC(Qt +H;‘))va/(kBTzf)’ (6)

where D is the diffusion coefficient, @, the heat

of transport, H} the enthalpy of formation of a
single vacancy, c the concentration of vacancies,
and f the correlation factor. Taking into account
the results of some experiments® which report a
steep rise in the diffusion coefficient prior to melt-
ing, we assume D to be as large as in the liquid.
Further, ¢c~107%° Q,~-0.1eV, ® Hj~0.4eV.°
The result for f~1 is

A~ =107 [J/(msK)]. (7)

Thus A, has the wrong sign, as long as the modulus
of @, is less than H}. A, is also negligible in com-

_parison to the phonon part A,;. A vacancy-type

diffusion is therefore not adequate to explain the
reported results.

Now returning to the soft-mode behavior, it
should be pointed out that a largely enhanced dif-
fusion could be caused by the softening effect. The
lower the energy, the larger is the individual oc-
cupation number of the special phonon and the larger
are the amplitudes of the corresponding vibration.
Therefore the soft phonons destroy the regular lat-
tice array (the long-range order), as the particles
participating in this excitation are no longer con-
fined to their lattice sites. Thus large units con-
sisting of many particles are allowed to diffuse
through the remaining “crystal.” Nothing is known
on the effectiveness of such a mechanism for the
thermal transport. Accepting this argument it is
proposed that the steep rise in the thermal conduc-
tivity is produced by a largely enhanced diffusion
part A; of the lattice thermal conductivity. That
conclusion is supported by results, obtained theoret-
ically by Kadanoff et al.?® at the liquid-gas critical
point 7,. They calculated the temperature depen-
dence of transport properties close to 7,. Regard-
ing the heat transport by sound waves, these authors
find a divergence according to In(7T' - T,), whereas
for the heat transport by viscous-flow modes they

100~
T
(mK) M
L]
10
Sample 2: o
Sample 3: ¥
slopes of the lines: 0.62
1 L 1 ! -
1 10 100 A l[Watt/ Kml 1000

FIG. 6. Examination of the power-law behavior of the lattice part of the thermal conductivity close to the melting
point. Hand-fitted lines with a slope of 0.62 are also shown for comparison with the theory. For further comments

see text.
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obtained a divergence characterized by |T - T, |3,

If one assumes a behavior of the thermal conduc-
tivity at the instability limit which resembles that
at the liquid-gas critical point, one can now com-
pare the data with the theoretical prediction. This
is done, identifying 7', with the starting point of
melting T,, as defined in Sec. III. Figure 6 shows
that the data points are scattered around a line with
a slope of roughly —%. However, in view of the
errors involved, the agreement may be fortuitous,
but it can be stated that a logarithmic divergence
is not adequate to fit the data.

To check the consistency of the proposed mech-
anism, let us examine its influence on the elec-
trical conductivity. Using the Ziman formula, *
one can make plausible that for monovalent metals,
such as sodium, the electrical conductivity o is
neither influenced by long-wavelength homophase
fluctuations nor by the softening of the “umklapp”
phonons to first order. This equation was proposed
for the liquid state but it can also be applied to a
solid using averaged quantities:

ot~ [P vig)|2S() ¢° da ®)

where V(q) is the electron-ion pseudopotential,
S(g) is the averaged static structure function, kg
the Fermi wave vector, and g the phonon wave
vector. In the limit ¢~ 0, S(q) becomes propor-
tional to the compressibility. Inspection of Eq. (8)
shows that only if the compressibility diverges there
might be some effect, largely damped down by the
factor ¢® and by the integration. As the Fermi
surface of sodium is well inside the first Brillouin
zone and as the integration extends only to 2kz, no
effect from a possible “umklapp” -phonon softening
is to be expected. These phonons are centered
around reciprocal lattice vectors, which are well
outside the range of integration. The assumption
that prior to melting a lattice instability may oc-
cur—as discussed above from the point of view of
the transport properties—is also supported from
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volume expansion measurements at sodium.? These
data can be interpreted to give a power-law behavior
for the expansion coefficient at constant pressure.
The exponent was determined to be —0. 34 +0. 14.
Thus the expansion coefficient diverges if the melt-
ing point is approached from the solid side, where-
as at the liquid side of the transition no anomaly
occurs.

All these observations can be explained in a nat-
ural way, assuming that the instability limit of the
solid phase is close to the metastability limit, as
was already discussed in Sec. II. On the other
hand there exists no high-temperature theory of
the true stability limit of the solid phase, %! thus no
comparison between the experimental results pre-

‘sented in this paper and theoretical calculations

can be made.
VII. SUMMARY AND CONCLUSION

It is shown that prior to melting there is a rise
in the lattice part of the thermal conductivity. Sev-
eral possible mechanisms were proposed and dis-
cussed, favoring a connection between melting and
an instability point of the solid phase. Further
studies of static and dynamic properties of simple
systems are necessary in the immediate vicinity
of the melting point, to lend support to or to reject
this proposal.

Note added in proof. Recently T. Schneider
et al.*% were able to show by theoretical considera-
tions and by computer experiments that a soft-mode
behaviour exists in a supercooled liquid, which
could be identified with the stability limit of the
liquid state.
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The problem of a noninteracting Fermi gas in a finite square-well potential is solved an-
alytically in the limit that the well becomes infinitely wide. The errors of previous authors
using this model as a first approximation to the problem of a simple metal with surfaces are

pointed out.

A very simple model which has been used to rep-
resent electrons in a simple metal with surfaces is
a noninteracting Fermi gas in a square-well poten-
tial, Bardeen' was probably the first to use this
model in his paper on the theory of the work func-
tion. He used the wave functions of this model to
calculate the exchange potential across the surface.
Huntington? used the same model to calculate the
surface energy of a simple metal in a first approxi-
mation. More recently, Lang and Kohn® based their
more sophisticated calculation of the surface energy
and the work function of some metals at least in
part on this model, and on the work of Bardeen and
of Huntington. It is the purpose of this paper to
calculate the exact analytic solution to this problem,
since, as will be shown, incorrect assumptions
about the density of states and the normalization of
the wave functions of the problem have led to errors
in some of the above work.

We shall define the problem somewhat differently
than has been done previously in order to show the
exact quantum-mechanical solution of the Schro-
dinger equation with the proper boundary conditions.
The coordinates of the problem are such that the x
axis is perpendicular to the “surfaces.” The

Schrodinger equation for the problem is
-3 VAE(X)+ V() ¥ X) = g ¥3(X) (1)
with the potential

V(x)={0’ ~L<x<L

v, x<—=-L, x>L .

The y and z coordinates are parallel to the sur-
faces, and periodic boundary conditions are applied
to these coordinates. The wave functions for the
problem have plane-wave form in the y and z coordi-
nates with a period L:

\I';(S{.) =(1/L)e*® ey, (x) .

The x component of the wave functions can be either
even or odd:

(N )Y2cosk,x , -L<x<L
wk*(x)zg(Nh)llzcosk,,Lexp[—(2V—kf)1/2|x..L|],
x<=L, x>L
" (;;):{ (Nk_)II/IZSi.nk_x, -L<x<L
- (N, )/2sink L exp[ - (2V -k3"2[x - L|],

x<-L, x>L



